A New Approach to Classify Text based on CosFuzzy Logic
نویسندگان
چکیده
Objective type of Examination evaluation is easy in Computer world. But the descriptive type of question evaluation is more difficult and there is no significant research has been taken place. In this paper I propose a new solution to the above problem with text classification using the new fuzzy logic named CosFuzzy Logic. Document Clustering is a useful technique that organizes a large quantity of unordered text documents into a small number of meaningful and coherent clusters, thereby providing a basis for intuitive and informative navigation and browsing mechanisms. Partitional clustering algorithms have been recognized to be more suitable as opposed to the hierarchical clustering schemes for processing large datasets. A wide variety of distance functions and similarity measures have been used for clustering, such as squared Euclidean distance, cosine similarity, and relative entropy. A Novel Fuzzy based feature clustering was proposed in which Gaussian distribution is used for fuzzy membership function. Clustering the data for four known classes, we used cosine similarity function along with fuzzy logic to calculate the similarity between two documents. We found that Experimental results show that our Cosfuzzy logic obtain better results. General Terms Feature Clustering, cosine similarity, Split distribution, fuzzy clustering.
منابع مشابه
Systematic literature review of fuzzy logic based text summarization
Information Overloadrq is not a new term but with the massive development in technology which enables anytime, anywhere, easy and unlimited access; participation & publishing of information has consequently escalated its impact. Assisting userslq informational searches with reduced reading surfing time by extracting and evaluating accurate, authentic & relevant information are the primary c...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملEXTRACTION-BASED TEXT SUMMARIZATION USING FUZZY ANALYSIS
Due to the explosive growth of the world-wide web, automatictext summarization has become an essential tool for web users. In this paperwe present a novel approach for creating text summaries. Using fuzzy logicand word-net, our model extracts the most relevant sentences from an originaldocument. The approach utilizes fuzzy measures and inference on theextracted textual information from the docu...
متن کاملIS-MRAS With On-Line Adaptation Parameters Based on Type-2 Fuzzy LOGIC for Sensorless Control of IM
This paper suggests novel sensorless speed estimation for an induction motor (IM) based on a stator current model reference adaptive system (IS-MRAS) scheme. The IS-MRAS scheme uses the error between the reference and estimated stator current vectors and the rotor speed. Observing rotor flux and the speed estimating using the conventional MRAS technique is confronted with certain problems relat...
متن کامل